365体育网站

Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Polyhedral Models of Felix Klein’s Group

This is a preview of subscription content, log in to check access.

References

  1. [BW]

    J. Bokowski and J.M. Wills, Regular polyhedra with hidden symmetries.Mathematical Intelligencer 10 (1988), no. 4, 27–32.

  2. [C]

    H.S.M. Coxeter,Regular Complex Polytopes, Cambridge University Press, Cambridge, 2nd edit. 1991.

  3. [CM]

    H.S.M. Coxeter and W.O.J. Moser,Generators and Relations for Discrete Groups, Springer, Berlin 1980 (4th edit.)

  4. [G]

    J. Gray, From the History of a Simple Group, TheMathematical Intelligencer 4 (1982), no. 2, 59–67 (reprint in [L]).

  5. [GS]

    B. Grünbaum, G. Shephard, Duality of polyhedra, in:Shaping Space, eds. G. Fleck and M. Senechal, Birkhäuser, Boston 1988.

  6. [K]

    F. Klein, Ueber die Transformation siebenter Ordnung der elliptischen Funktionen,Math. Ann. 14 (1879), 428–471 (English transi, by S. Levy in [L]).

  7. [L]

    S. Levy (edit.),The Eightfold Way, MSRI Publ., Cambridge Univ. Press, New York 1999.

  8. [SSW]

    365体育网站P. Scholl, A. Schürmann and J.M. Wills, Polyhedral models of Klein’s quartic, http://www.math.uni-siegen.de/wills/klein/

  9. [SW1]

    E. Schulte, J.M. Wills, A polyhedral realization of Felix Klein’s map 3, 78 on a Riemann surface of genus 3,J. London Math. Soc.365体育网站 32 (1985), 539–547.

  10. [SW2]

    E. Schulte, J.M. Wills, Kepler-Poinsot-type realization of regular maps of Klein, Fricke, Gordon and Sherk,Canad. Math. Bull. 30 (1987), 155–164.

Download references

Author information

Correspondence to Peter Scholl.

Rights and permissions

About this article

Cite this article

Scholl, P., Schürmann, A. & Wills, J.M. Polyhedral Models of Felix Klein’s Group. The Mathematical Intelligencer 24, 37–42 (2002). http://doi.org/10.1007/BF03024730

Download citation

  • Published:

  • Issue Date:

Keywords

  • Mathematical Intelligencer
  • Hide Symmetry
  • Regular Polyhedron
  • Octahedral Symmetry
  • White Triangle