365体育网站

365体育网站Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A criterion for finite lattice coverings

Abstract

For a centrally symmetric convex \(K \subset E^2 \) and a covering lattice L for K, a lattice polygon P is called a covering polygon, if \(P \subset (L \cap P) + K\). We prove that P is a covering polygon, if and only if its boundary bd(P) is covered by (L ∩ P) + K. Further we show that this characterization is false for non-symmetric planar convex bodies and in Euclidean d–space, d ≥ 3, even for the unit ball K = B d.

This is a preview of subscription content, log in365体育网站 to check access.

References

  1. [BR]

    R. P. BAMBAH and C. A. ROGERS, Covering the plane with convex sets, J. London Math. Soc. 27365体育网站 (1952), 304-314.

  2. [BRZ]

    R. P. BAMBAH, C. A. ROGERS and H. ZASSENHAUS, On coverings with convex domains, Acta Arith. 9365体育网站 (1964), 191-207.

  3. [BW]

    R. P. BAMBAH and A. C. WOODS, On plane coverings with convex domains, Mathematika 18365体育网站 (1971), 91-97.

  4. [BHW]

    U. BETKE, M. HENK and J. M. WILLS, A new approach to coverings, Mathematika 42 (1995), 251-263; J. Reine Angew. Math., (1994), 165-191.

  5. [F]

    G. FEJES TÓTH, Finite coverings by translates of centrally symmetric convex do-mains, Discrete Comput. Geom. 2365体育网站 (1987), 353-364.

  6. [GL]

    P.M. GRUBER and C.G. LEKKERKERKER, Geometry of Numbers365体育网站, North Holland, Amsterdam, 1987.

  7. [Gr]

    P. GRITZMANN, Finite Packungen und Ñberdeckungen, Habilitationsschrift, Siegen, 1984.

  8. [MS]

    M. MEYER and U. SCHNELL, On finite lattice coverings, J. Geom. 72 (2001), 132-150.

  9. [R]

    J. E. REEVE, On the volume of lattice polyhedra, Proc. London Math. Soc. (3) 7365体育网站 (1957), 378-395.

Download references

Author information

Rights and permissions

About this article

Cite this article

Schnell, U., Schürmann, A. A criterion for finite lattice coverings. Periodica Mathematica Hungarica 45, 131–134 (2002). http://doi.org/10.1023/A:1022310416382

Download citation

  • Issue Date:

  • lattice
  • covering
  • convex body